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Abstract

Dimensionless scales of radius and time, proposed by the authors in a previous study, were used to quantitatively analyze
the bubble departure radius and time during nucleate pool boiling. The results obtained from dimensional analysis were
compared with experimental data reported in many studies. These experimental data are including partial nucleate pool
boiling data with constant heat flux and temperature conditions acquired over the past 40 years at atmospheric and sub-
atmospheric pressures, as well as data obtained at subcooled, saturated, and superheated pool temperature conditions.

It was shown that the departure radius and time could be well correlated with respect to Jakob number as proposed by
the previous studies. And the bubble departure behaviors well categorized between atmospheric and sub-atmospheric pres-
sure, which is occurred from the different growth rate near the departure time partial nucleate pool boiling.

For almost all obtained under atmospheric pressure, the dimensionless departure radius and time scales were about 25
and 60, respectively. For higher Jakob number, the square root of Bond number was proportional to the power of 0.7 of
Jakob number, little different from the previous correlations. The dimensional departure radius and time estimated from
the relationships proposed in this study were compared with measured departure scales and the results obtained with the
previous correlations. And it was shown that the relationships could well predict and describe the departure behaviors of
bubble during nucleate pool boiling.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The complete process of liquid heating, nucleation, bubble growth, and departure is the central mechanism
of two-phase heat transfer from a superheated wall during nucleate pool boiling. Two features of this process
that affect the rate of heat transfer during the ebullition cycle are the bubble radius at departure, Rd, and the
frequency at which bubbles are generated and departed, f.
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Since the bubble radius and frequency of departure must be related, the departure radius and the bubble
growth rate must be also related. The inverse of the frequency, s = 1/f, which is the time period associated
with the growth of each bubble, must equal the sum of the waiting period and the time required for the bubble
to grow to its departure radius:
1

f
¼ s ¼ tw þ td ð1Þ
where, tw is the waiting period and td is the departure time.
Therefore, the frequency of bubble departure depends directly on how large the bubble must become in

order for it to depart, and, as a consequence, on the growth rate at which the bubble can grow to this size
on the heating surface.

The bubble radius at departure is primarily determined by the net effect of forces acting on the bubble as it
grows on the surface. Interfacial tension acting along the contact line invariably acts to hold the bubble in
place on the surface. Buoyancy is often a major player in the force balance, although its effect depends on
the orientation of the surface with respect to the accelerating or gravitational body force vector.

If the bubble growth rate is high, the inertia associated with the induced liquid flow field around the bubble
may also tend to pull the bubble away from the surface. When the liquid adjacent to the surface has a bulk
motion associated with it, drag and lift forces on the growing bubble may also act to detach the bubble from
the surface. In addition, because the rate of bubble growth and the shape of the bubble (hemispherical or
spherical) may affect the conditions for bubble departure, the departure radius may be affected by the wall
superheat, the contact angle, h, and the thermodynamic properties of the liquid and vapor phases.

The departure radius of the bubble during nucleate boiling has been the subject of numerous investigations.
In experimental studies, the departure radius has typically been determined from high-speed movies of the
boiling process. Based on data obtained in this manner, a number of investigators have proposed correlation
equations that may be used to predict the departure radius of bubbles during nucleate boiling.

Many of the correlations are written in terms of the Bond number, Bo, defined as
Bo ¼ gðql � qvÞð2RdÞ2

r
ð2Þ
where, g is gravity, ql is the liquid density, qv is the vapor density, and r is the liquid surface tension.
This same dimensionless group is also sometimes referred to as the Eotvos number.
Cole and Shulman (1966b) proposed a relation in which Bo1/2 is simply proportional to the inverse of the

absolute pressure,
Bo1=2 ¼ 1000

P
ð3Þ
where, P is the pressure in mmHg.
This relation contrasts sharply with other relations where the dimensionless departure diameter Bo1/2

depends on a complex combination of physical properties. The success of Eq. (3) is apparently a result of
the fact that 1000/P approximates the combined pressure dependence of the properties that appear in the
other relations. In a subsequent study, Cole (1967) proposed
Bo1=2 ¼ 0:04 Ja ð4Þ

This relation is an extension of Eq. (3) in the sense that the pressure term is taken into account by the inclusion
of the vapor density in the Jakob number, Ja, defined as Ja = qlCplDT/qvhfg, based on the temperature differ-
ence between the wall and the saturation. In the Jakob number, Cpl is the liquid specific heat, DT(=Twall �
Tsat) is the wall superheat, hfg is the latent heat, Twall is the wall temperature, and Tsat is the saturation
temperature.

Later, Cole and Rohsenow (1968) proposed a new relation as an evolutionary improvement of Eq. (4),
Bo1=2 ¼ C Jac5=4 ð5Þ

where C = 1.5 · 10�4 for water, C = 4.65 · 10�4 for fluids other than water.
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In Eq. (5), the wall superheat was replaced by the critical temperature, Tc, because experimental data con-
tradicted the proportionality between the wall superheat and departure radius implied by Eq. (4). Therefore,
the Jakob number was described as
Jac ¼ qlCplT c

qvhfg

ð6Þ
Golorin et al. (1978) later developed the following correlation:
2Rd

d1

¼ 1þ d2

d1

ð7Þ

d1 ¼
1:65d�r

gðql � qvÞ
ð8Þ

d2 ¼
15:6ql

gðql � qvÞ

� �1=3 bdklðT wall � T satÞ
qvhfg

� �2=3

ð9Þ
where, kl is the liquid conductivity, d* = 6.0 · 10�3 mm, bd = 6.0 for water, alcohol, and benzene.
This correlation includes the dynamic interaction between the growing bubble and the surrounding liquid,

as well as the small-scale roughness of the heating surface. Kutateladze and Gogonin (1979) found that they
could correlate a large body of data from the literature using
Bo1=2 ¼ 0:25ð1þ 105K1Þ1=2 for K1 < 0:06 ð10Þ

K1 ¼
Ja
Prl

� �
gqlðql � qvÞ

l2
l

� �
r

gðql � qvÞ

� �3=2
( )�1

ð11Þ
where, Prl is liquid Prandtl number and ll is the liquid viscosity.
This correlation contains only the Bond number and the dimensionless group K1.
Jensen and Memmel (1986) recently compared the above correlations against available departure radius

data and proposed an improvement to the Kutateladze and Gogonin (1979) correlation,
Bo1=2 ¼ 0:19ð1:8þ 105K1Þ2=3 ð12Þ

Although different cavities will generate bubbles at different frequencies, it can be useful to consider the

mean bubbling frequency, f, associated with the boiling process for a given solid liquid combination and
imposed conditions. Peebles and Garber (1953) proposed the relation
f ð2RdÞ ¼ 1:18
td

td þ tw

� �
rgðql � qvÞ

q2
l

� �1=4

ð13Þ
Other correlations proposed in previous studies can be found in Table 1. All correlations described in this
study were obtained from Carey (1992).

However, previous studies usually used the results obtained when the bubble departed from the heating sur-
face with a constant heat flux condition, while we used experimental results recently obtained with constant
temperature conditions and analyzed the characteristics when the bubble departed from the heating surface
using the dimensionless characteristic radius and time proposed by Lee et al. (2003). The Jakob number
considered in this study ranged from 15 to 2100. When Ja < 30, the experiments were performed in the partial
nucleate boiling region at atmospheric pressure conditions. When Ja > 30 except for one data, the experiments
were performed at sub-atmospheric pressure conditions. The working fluids included binary mixtures as well
as pure substances.

For atmospheric and saturated pool conditions, we used the results of Staniszewski (1959), Han and
Griffith (1965), and Fontana (1972) for water, Cole and Shulman (1966a) for n-pentane, Lee et al. (2003)
and Kim et al. (2004) for R11 and R113, and Lee et al. (2004) for binary mixtures consisting of R11 and
R113. For atmospheric and other pool temperatures, we used Zuber (1961) for water and subcooled condi-
tions, Kim et al. (2002) for FC-72 and subcooled conditions, and Kim et al. (2004) for R113 and subcooled,
saturated, and superheated pool conditions. The experiments of Lee et al. (2003, 2004) and Kim et al. (2004)



Table 1
Departure radius and frequency correlations

Bo1/2 = 0.0208h where h is the contact angle in degrees Fritz (1935)

Bo1=2 ¼ r
gðql � qvÞ

� ��1=6 6klðT wall � T satÞ
q00

� �1=3

Zuber (1959)

Bo1=2 ¼ 3p2q2
l a

2
l g1=2ðql � qvÞ1=2

r3=2

" #1=3

Ja4=3 Ruckenstein (1963)

Rd

RF
¼ � C

2RF
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

ð2RFÞ2
þ 1

s
where RF is the radius with Fritz (1935) Borinshansky and Fokin (1963)

C ¼ 6

g

� �
ql

ql � qv

� �
qv

ql

� �0:4 q00

qvhfg

� �

Bo1=2 ¼ 1000

P
where P is pressure in mmHg Cole and Shulman (1966)

f (2Rd) = 0.078 Jakob and Fritz (1931)

f ð2RdÞ ¼ 0:59
rgðql � qvÞ

q2
l

� �1=4

Zuber (1963)

f 2(2Rd) = constant for dynamically (inertia) controlled growth Ivey (1967)

f 1/2(2Rd) = constant for thermally (heat transfer) controlled growth

f 2ð2RdÞ ¼
4

3

gðql � qvÞ
Cdql

where Cd is a bubble drag coefficient, Cd = 1 for water at 1 atm Cole (1960)

f 1=2ð2RdÞ ¼
4

p
Ja

ffiffiffiffiffiffiffiffiffiffi
3pal

p td

td þ tw

� �1=2

þ 1þ td

td þ tw

� �1=2

� 1

( )
Mikic and Rohsenow (1969)

f 1=2ð2RdÞ ¼ 0:83Ja
ffiffiffiffiffiffiffi
pal
p

for 0.15 < td/(td + tw) < 0.8

Table 2
Experimental conditions used to obtain the data referred to in this study

Pressure Heating surface Fluid Subcooled Saturated Superheated

Atmospheric Constant heat flux Water Zuber (1961), #1 Staniszewski (1959), #1
Han and Griffith (1965), #1
Fontana (1972), #1

n-Pentane Cole and Shulman
(1966a), #1

Constant temperature R11 Lee et al. (2003), #4
R113 Kim et al. (2004), #14 Lee et al. (2003), #1 Kim et al.

(2004), #2Kim et al. (2004), #1
Binary: R11 + R113 Lee et al. (2004), #4
FC-72 Kim et al. (2002), #1

Sub-atmospheric Constant heat flux Water Cole and Shulman (1966a), #4
van Stralen et al. (1975), #5

Methanol Cole and Shulman (1966a), #3
n-Pentane Cole and Shulman (1966a), #1
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were performed at constant temperature conditions. Finally, for sub-atmospheric and almost nearly saturated
conditions, we used Cole and Shulman (1966a) for methanol, water, and n-pentane, and van Stralen et al.
(1975) for water. The experimental conditions are clearly indicated in Table 2, and the sets of data will be
referred to using the numbers indicated in the table.

2. Experiments

2.1. Experimental apparatus

The experimental data for constant temperature conditions were mainly obtained from previous studies
by the authors. In these studies, we used a microscale heater array to maintain a constant temperature at
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the heating surface and to measure the heat flow rate. The heater was fabricated on a transparent glass
wafer using a very-large-scale-integrated (VLSI) technique. The transparency provided a bottom view of
the growing bubble, which was captured using a high-speed CCD camera. First, a titanium and platinum
layer for the heater line on the wafer was installed using thermal evaporation. Then, a titanium and
platinum layer for the power line was fabricated. The roughness of the heating surface was approximately
0.4 lm, which was the height of the heating line with respect to the base substrate. The static contact
angle of the microscale heater array surface was 71� for distilled water and 11.4� for R113, which indicates
the hydrophilic nature of R113. A total of 96 microscale heaters comprised one microscale heater array.
Each microscale heater measured 0.27 · 0.27 2, and the total size of the microscale heater array was
2.7 · 2.7 m2. For our experiments, the heater was manufactured at the Samsung Advanced Institute of
Technology based on the idea of Rule et al. (1998) and Rule and Kim (1999). Most of the experimental
devices that have been used previously to control the power of the heating block beneath the bubble, and
thereby provide a constant heat flux, could not maintain a constant surface temperature over very short
time intervals. However, our microscale heater array was controlled with a Wheatstone bridge circuit that
provided a constant surface temperature with a high temporal resolution. The longest time delay in the
circuit occurred at the OP amp, which had a time resolution of 10�7 s Due to the fast response of the
circuitry, good repeatability was achieved in our experimental results.

To maintain and control the constant temperature conditions, each heater was previously calibrated for
temperatures ranging from 20 to 80 �C. The temperature of the 96 heaters in the array was controlled by
96 electric Wheatstone bridge feedback circuits, which were operated in a manner similar to that used for
constant-temperature hot-wire anemometry. Each heater in the array could be represented as one resistor
in a Wheatstone bridge circuit. The detail calibration process for the wall temperature of the heater was
described in Lee et al. (2003). A data acquisition system that could measure and store data at 7.35 kHz
with 12-bit resolution was used to measure the heat flow rate of each heater throughout the experiments.
Therefore, the voltage data for each heater were sampled every 0.136 ms and 1000 voltage readings for
each heater were stored with 12-bit resolution. All the tests performed in this study lasts 136 ms. These
measurements were synchronized with the images captured by the high-speed CCD camera. A more detail
description can be found in Rule and Kim (1999). Fig. 1 shows a schematic diagram of the experimental
apparatus. Ten thin film heaters with 15,500 W/m2 were used to control the liquid temperature inside the
test chamber without providing another heat source for the bubble. A 150-W cold light source was used
for the CCD camera. The maximum speed of CCD camera (Redlake Co., HG-100K) was 100,000 frames
per second. A long distance microscopic lens was used to capture the small bubbles during boiling (see
Fig. 1).
Fig. 1. Schematic diagram of the experimental apparatus.
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2.2. Uncertainty analysis

The bubble growth behavior was analyzed using side-view images, while the heat flow rate was measured
using the microscale heater during growth. Since most previous results for bubble growth have been for a
spherical bubble, the growth behavior in this study was analyzed using the equivalent radius of a sphere with
the same volume. The images captured from inception to departure showed reasonable bubble geometries,
with an axi-symmetric shape about the vertical axis and a non-symmetric shape about the horizontal axis,
as shown like Fig. 2. Based on the shape assumption, we calculated the volume of the upper and lower parts
of the bubble using
V U ¼
2

3
pB2A ð14Þ

V L ¼ pB2 D� D3

3E2

� �
; E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1� ðC=2Þ2
B2

vuut ð15Þ
where, A, B, C, D and E are the dimensions indicated in Fig. 2. VU is the volume of the upper part of the
bubble, and VL is the volume of the lower part of the bubble. VL can also be calculated using B, D, and C

(see Fig. 2).
The equivalent radius, R, can then be defined as the radius for which the total volume (V) from the mea-

surements is balanced with that of a sphere with an equivalent radius,
V ¼ V U þ V L ¼
4

3
pR3

eq ð16Þ

R ¼ 1

2
B2Aþ 3

4
B2 D� D3

3E2

� �� �1
3

ð17Þ
The equivalent radius can be calculated from the dimensions shown in Fig. 2; however, the errors in the
dimensional measurements will propagate into the calculation of the equivalent radius. The dimensions shown
in Fig. 2 were measured by counting the number of pixels in each captured image. A micrometer was placed in
the chamber at the same distance as the bubble nucleation to provide guidance for the size measurements.
From the captured micrometer images, a physical dimension of 1000 mm corresponded to 197 pixels in our
experiments. Therefore, one pixel in each image corresponded to 5.0761 lm. The clearly captured images
could be measured with an error of ±1 pixel. An uncertainty analysis was performed using the method
described by Coleman and Steele (1989). The maximum uncertainty in the first image, which contained the
smallest bubble, was 5.0%.
Fig. 2. Geometry of the spheroid used to determine the bubble volume.
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Lee et al. (2003) captured bubble images with a time resolution of 1.0 ms (1000 frames/s), while Lee et al.
(2004) captured bubble images with a time resolution of 0.25 ms (4000 frames/s). Kim et al. (2004) captured
bubble images with a time resolution of 0.2 ms (5000 frames/s).

3. Results and discussion

3.1. Dimensional analysis of the bubble growth and departure

We performed a dimensional analysis to compare the growth and departure behavior with the same scales,
which required the characteristic time and length scales.

Suppose that the bubble growth can be characterized by the pressure difference (DP) between the vapor and
the bulk liquid pressures. Then, the characteristic velocity scale (vc) may be determined from the driving
potential,
vc ¼
Rc

tc

¼
ffiffiffiffiffiffiffiffiffiffiffi
2

3

DP
ql

s
ð18Þ
where, Rc is the characteristics bubble radius scale, tc is the characteristics time scale.
Here, the factor of two-thirds was inserted to allow comparisons with the dimensionless parameter of Mikic

et al. (1970).
The characteristic time scale can be determined from the ratio of the corresponding latent heat transfer and

the conduction heat transfer rate through the interface,
qlatent

_qconduction

¼
qvhfg

4
3 pR3

kl4pR2 oT
or

¼ 1

3

qvhfgR3
c

klR2
c

T c
Rc

Rþ3

Rþ2 oTþ
orþ
¼ tc

Rþ

oTþ
orþ

ð19Þ

tc ¼
1

3

qvhfgR2
c

klT c

¼ 1

3

qvhfgR2
c

klDT
¼ 1

3

1

Jaa
R2

c ð20Þ
where kl is the thermal conductivity, T is the temperature, and a is the thermal diffusivity of the liquid.
If the bulk liquid is saturated, bubble growth should be influenced by the wall superheat. The Jakob num-

ber is defined by ðqlCP l
DT Þ=ðqvhfgÞ, where the wall superheat (DT = Twall � Tsat) is used as the characteristic

temperature scale (Tc = DT = Twall � Tsat). From Eqs. (18) and (20), the characteristic radius and time scales
are
Rc ¼
ffiffiffiffiffi
27

2

r
Jaa

ffiffiffiffiffiffiffi
ql

DP

r
; tc ¼

9

2
Jaa

ql

DP
ð21Þ
We will use the departing radius as a scaling parameter to adjust for the thermal growth behavior near the
departing time. Mikic et al. (1970) assumed that bubble motion was governed by the extended Rayleigh
equation,
DP ¼ P v � P1 ¼ qlR
d2R
dt2
þ 3

2
ql

dR
dt

� �2

þ 2r
R

ð22Þ
where, Pv is the vapor pressure of bubble, P1 is ambient pressure and t is the time.
The pressure difference can be related to the departing radius, Rd, using the static equilibrium since the

radial acceleration and velocity are negligible close to the bubble departure (see Eq. (22)).
Therefore,
DP ¼ 2r
Rd

ð23Þ
To effectively consider the results obtained from subcooled and superheated pool temperature conditions, we
used a modified Jakob number, Ja* = (qlCplDT*)/(qvhfg), based on a new characteristic temperature,
T �c ¼ DT �, proposed by Kim et al. (2004).
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T �c ¼ f ðT wall; T b; T satÞ ¼ bðT wall � T satÞ þ ð1� bÞðT b � T satÞ ð24Þ
where Tb is the bulk temperature and b is 0.7.
Then, the characteristic scales from Eq. (21) can be rewritten as
Rc ¼
ffiffiffiffiffi
27
p

2
Jaa

ffiffiffiffiffiffiffiffiffi
qlRd

r

r
; tc ¼

9

4
Jaa

qlRd

r
ð25aÞ

R�c ¼
ffiffiffiffiffi
27
p

2
Ja�a

ffiffiffiffiffiffiffiffiffi
qlRd

r

r
; t�c ¼

9

4
Ja�a

qlRd

r
ð25bÞ
Finally, the dimensionless bubble radius (R+ or R*) and time (t+ or t*) can be expressed as
Rþ ¼ R
Rc

; tþ ¼ t
tc

ð26aÞ

R� ¼ R
R�c
; t� ¼ t

t�c
ð26bÞ
3.2. Results and discussion

The behavior of the bubble departure radius and time is plotted against the Jakob number in Fig. 3.
The figure indicates that the departure radius and time were closely related to the Jakob number, as pro-
posed in previous studies, regardless of the value of the Jakob number, fluid, pool temperature, or heating
conditions.

For Jakob numbers higher than about 30, all except one set of data were obtained under sub-atmo-
spheric pressures. Many previous and these author’s studies for pool boiling were revealed that the tran-
sition from partial (isolated bubble) to fully-developed (bubble jet or column) nucleate boiling region could
be occurred at about 30 of Jakob number (DT = Twall � Tsat: about 10) for water and about 32 for refrig-
erant R11 or R113 (DT = Twall � Tsat: about 25). The departure radius and time measured at sub-atmo-
spheric pressure were usually greater than those measured at atmospheric pressures, as indicated in
Fig. 3. It is well known that the growth behavior is one of the parameters that can affect the departure
state. Under atmospheric and sub-atmospheric pressures, the departure characteristics are directly affected
by the bubble growth behavior near the departure time. Nevertheless, it is difficult to demonstrate different
bubble growth behaviors and the characteristics of the vapor pressure at departure experimentally and
numerically.

As previous studies to analyze the departure behaviors, we performed the dimensional analysis. Fig. 4
shows the dimensionless departure radius and time, Rþd and tþd (R�d and t�d), as functions of the Jakob number.
The dimensionless bubble departure radius (Rþd or R�d) and time (tþd or t�d) can be defined as
Rþd ¼
Rd

Rc

; tþd ¼
td

tc

ð27aÞ

R�d ¼
Rd

R�c
; t�d ¼

td

t�c
ð27bÞ
The figure clearly indicates the relationship between the dimensionless departure radius and time with Jakob
number, even for different fluids, surface characteristics, heating conditions, and pool conditions. The
dimensionless departure radius and time decreased with increasing Jakob number because the characteristic
scales of the sub-atmospheric pressure were much greater than those of atmospheric pressure. The lines
presented in the figure are the lines fitted for results obtained at only sub-atmospheric pressure. As shown
in the figure, there are relatively large deviations between the results of the dimensionless bubble departure
radius and time obtained at atmospheric pressure and the line. These deviations can be originated from the
difference of the bubble growth behavior (growth rate) between atmospheric and sub-atmospheric pressure
conditions, these phenomena were shown the effects of the liquid inertia on the departure behavior in some
previous studies. Especially, Kiper (1971) showed that the dimensionless minimum departure radius is func-
tion of only Jakob number. To do that, he used the analytical method and the bubble growth equation as
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Eq. (28) to consider the liquid inertia regardless of low and high Jakob numbers. And, the constant C of the
equation was function of thermal diffusivity and Jakob number.
R ¼ Ct1=2 ð28Þ

But, Lee et al. (2003, 2004) showed that a bubble growth rate in thermal growth region near departure time
was proportional to (t+)1/5, which was slower than the growth rate proposed in previous analytical analyses
at saturated and atmospheric conditions regardless of working fluids and heating conditions. And Kim et al.
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(2004) also showed that a bubble growth rate at various pool temperature (subcooled, saturated, and super-
heated) and atmospheric conditions with the fixed wall temperature was proportional to (t*)1/5 under con-
stant temperature heating condition. Then again, to show the bubble growth rate at sub-atmospheric
pressure, we performed the dimensional analysis using the characteristics scales proposed by Mikic et al.
(1970) and presented as Fig. 5.

The result showed that a bubble growth rate at sub-atmospheric pressure conditions was proportional to
between (t+)1/2 and (t+)1/3 near the departure time under constant heat flux heating condition regardless of



Fig. 5. The dimensionless bubble growth behavior at sub-atmospheric pressure.
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working fluids and heating surface conditions. The growth rate at sub-atmospheric pressure is very higher
than that at atmospheric pressure. The growth rate difference can be firstly estimated from the initial pressure
potential difference
DPþ ¼ P vðT wallÞ � P sys

P sys

ð29Þ
as illustrated in Fig. 6(a).
The initial vapor pressure was calculated as a function of the wall temperature. The pressure potential of

higher Jakob numbers was relatively higher than that of atmospheric pressure. In addition, higher Jakob num-
ber for sub-atmospheric pressures corresponded to very low vapor densities, as shown Fig. 6(b), due to the
density ratio
qþ ¼ qv

ql

ð30Þ
Even if the mass of liquid evaporated in the interface between bubble and the surrounding liquid is same,
the volume change of bubble will be relatively increased owing to high specific volume. So, the bubble
growth rate is the ratio of the volume change of bubble, or the evaporation rate of the bubble, to time
change, that will be depended on the thermal boundary layer thickness around the bubble and the temper-
ature gradient in the bubble interface. At sub-atmospheric pressure, the growth rate could be higher due to
the relatively high wall superheat and the difference of thermodynamic property (high Jakob number) than
that of atmospheric pressure. So, the liquid inertia effect originated from the different growth rates can make
different departure behaviors for each pressure conditions. As proposed by Lee et al. (2003, 2004), we also
found that the dimensionless departure radius (Rþd or R�d) was approximately 25, and the dimensionless
departure time (tþd or t�d) was approximately 60, regardless of the boundary conditions, pool temperatures,
or working fluids used for nucleate pool boiling experiments with atmospheric pressure except for the result
of Fontana (1972). Using the values of the dimensionless departure radius and time, the dimensional depar-
ture radius and time can be predicted as follows:



1280 J. Kim, M.H. Kim / International Journal of Multiphase Flow 32 (2006) 1269–1286
Rþd ¼
Rdffiffiffiffi

27
p

2
Jaa

ffiffiffiffiffiffiffi
qlRd

r

q ¼ 25

tþd ¼
td

9
4
Jaa qlRd

r

¼ 60

ð31Þ
Fig. 6. Dimensionless initial pressure potential and vapor density.
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Rd ¼ 25

ffiffiffiffiffi
27
p

2
Jaa

ffiffiffiffi
ql

r

r" #2

td ¼ 60
9

4
Jaa

qlRd

r

ð32Þ
Fig. 7. Comparison of the estimated and experimental dimensional departure radius and time at atmospheric pressure.
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And, fitted the dimensionless departure radius (Rþd or R�d) and time (tþd or t�d) as function of Jakob number (Ja

or Ja*) regardless of the boundary conditions, pool temperatures, or working fluids used for nucleate pool
boiling experiments with sub-atmospheric pressure and presented the equation as follows:
Rþd ¼ 244:398Ja�0:612

tþd ¼ 2369:97Ja�1:194
ð33Þ
Fig. 7 compares the dimensional departure radius and time estimated from the proposed relations, Eq. (32),
with the experimental results obtained under atmospheric pressure. The dimensional departure radius and
time obtained from Eq. (32) proposed for atmospheric condition in this study were well predicted within a
±20% error. And the departure radius estimated using the proposed correlations, Eq. (32), at atmospheric
was in better agreement with measured data when compared with the result obtained from previous correla-
tions, as shown in Fig. 8.

Fig. 9 compares the dimensionless departure radius and time obtained using the proposed correlations, Eq.
(33), with experimental results for sub-atmospheric pressure conditions. As was the case for atmospheric pres-
sure conditions, the departure radius and time were also predicted with ±20% error, and the proposed corre-
lations were in better agreement with measured data when compared with the result from the correlations
proposed in previous studies (see Fig. 10).

The preceding results show that we can obtain a relationship for the departure behavior of bubbles during
nucleate pool boiling under a range of conditions, including constant heat flux and temperature pool condi-
tions; subcooled, saturated, and superheated thermodynamic conditions; and atmospheric and sub-atmo-
spheric pressure conditions. Based on these results, we propose the following relationship between the
Jakob and Bond numbers for sub-atmospheric pressure condition like as presented at previous studies:
Bo1=2 ¼ 0:1649Ja0:7 ð34Þ

as illustrated in Fig. 11. The square root of the Bond number was proportional to the Jakob number raised to
the power of 0.7, which differs from previous correlations, such as those proposed by Ruckenstein (1963) and
Cole (1967).
Fig. 8. Comparison of the correlations obtained in this study and previous studies at atmospheric pressure.



Fig. 9. Comparison of the estimated and experimental dimensionless departure radius and time at sub-atmospheric pressure.
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4. Conclusions

A quantitative analysis of bubble departures during nucleate pool boiling was performed using the charac-
teristic bubble radius and time scales we proposed in a previous study. Dimensionless scales were obtained
from experimental data reported in many studies and include partial nucleate pool boiling data with constant
heat flux and temperature conditions at atmospheric and sub-atmospheric pressures, as well as data obtained
at subcooled, saturated, and superheated pool conditions.



Fig. 10. Comparison of the correlations obtained in this study and previous studies at sub-atmospheric pressure.

Fig. 11. Relationship between the Jakob and Bond numbers at sub-atmospheric pressure.
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The departure characteristics of bubble were classified between atmospheric and sub-atmospheric pressure,
showed different behaviors between low and high Jakob number. Typically as known, the classification was
originated from the difference growth rate near the departure time.

From the results under atmospheric pressure, it was shown that the dimensionless departure radius and
time scales were about 25 and 60 regardless of the surface characteristics, the heating conditions, the working
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fluids, and pool temperatures, respectively. For higher Jakob number, the close relations between the depar-
ture radius and time and Jakob number were shown, as like the results proposed by the previous studies. And
the square root of Bond number was proportional to the power of 0.7 of Jakob number, little different from
the previous correlations.

Finally, the relationships for low and high Jakob numbers proposed in this study could well predict and
describe the departure behaviors of bubble on the heating surface with ±20% error.
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